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Abstract 

We  consider  the  problem  of  approximating  function  in  a  general  domain  in  one 

and  two  dimensions  using  piecewise  polynomial  interpolation.  We  propose  an  error 

estimator  and  show  how  to  adaptively  determine  the  interpolation  degree.  Numerical 

examples  are  given. 

GM£
I  

' 

mic 

lAR  □ 

J'lU:  V  . 

i  i.'-.-.tf  C-,D - - 

;;ivr 

a-ii 

*  Supported  by  NASA  Langley  and  U.S.  Naval  Research  Laboratory. 
fPartially  supported  by  the  Office  of  Naval  Research  under  Grant  N00014-90-J1030. 

1 



I  Introduction 

Polynomial  interpolation  is  an  important  tool  in  approximating  functions.  The  optimal 

interpolation  in  an  interval  was  under  much  study  and  was  resolved  with  the  proof  of  the 

Erdos-Bernstein  conjecture  [4]  [5].  However,  few  attempts  have  been  made  to  address  the 

optimal  polynomial  interpolation  in  the  triangle  and  in  the  tetrahedron.  In  [2]  [3],  we  have 

computed  the  positions  of  the  mean  optimal  interpolation  sets  in  the  triangle  and  in  the 

tetrahedron.  The  mean  optimal  sets  are  close  to  optimal  in  the  uniform  norm  and  are  shown 

to  have  the  smallest  Lebesgue  constants  among  currently  known  interpolation  sets.  They 

perform  well  in  many  applications.  They  have  been  successfully  used  in  the  p-version  of  the 
Finite  Element  Method. 

In  this  paper,  we  consider  the  problem  of  approximating  function  in  a  general  domain 

in  one  and  two  dimensions  using  polynomial  interpolation.  We  assume  that  the  domain 

is  partitioned  into  standard  subdomains,  i.e.,  into  intervals  and  triangles.  In  each  subdo¬ 

main,  we  approximate  the  function  using  the  polynomial  interpolation  points  given  in  [2]. 

In  a  partitioned  domain,  interpolation  using  the  same  polynomial  degree  in  every  standard 

subdomain  leads  to  continuous  piecewise  polynomial.  Nevertheless,  uniform  distribution  of 

degree  is  usually  not  economical.  In  addition,  in  boundary  value  problems,  small  polynomial 

degree  is  desired  in  approximating  the  essential  boundary  condition  for  an  efficient  imple¬ 
mentation  of  the  Finite  Element  Method.  We  address  the  question  of  how  to  determine  the 

optimal  degree  of  polynomial  interpolation  in  each  subdomain  to  yield  the  most  efficient 

approximation. 

In  section  2,  we  review  the  theory  of  polynomial  interpolation  and  summarize  the  main 

results  in  [2]  and  [3].  In  section  3,  we  introduce  an  effective  error  estimator  and  present  an 

adaptive  procedure  for  determining  the  polynomial  interpolation  degree  in  each  subdomain 

in  and  R^.  We  present  an  algorithm  to  ensure  the  continuity  of  the  interpolated  piecewise 
polynomial  for  a  nonuniform  distribution  of  degree. 

II  On  Interpolation 

2.1  Interpolation  in  an  interval 

Let  /  =  (—!,  1)  and  C{I)  be  the  space  of  continuous  functions.  Let  C{I)  be  equipped  with  the 

norm  \\f\\oo  =  maxj^j  |/(t)|.  Further  let  Vn  C  C(I)  be  the  set  of  polynomials  of  degree  n.  Let 

T”  =  (tq  ,  r”, ...,  r")  with  -1  =  Tq  <  r"  <  ...  <  =  1.  Then  by  £r"  we  denote  the  mapping 

C(I)  Vn-  Pn  =  ̂ T’^f  such  that  e  Vn  and  p„(r”,/,r")  =  f{T^)J  =  l,...,n. 
Obviously  Pn(T",/)  is  uniquely  determined  and  is  a  projection.  Denote  now 

Let 

A(r)  =  ||z:T.|U  =  s«P//ol!|^.  (2.1) 

it(T",()=  n  =  (2-2) 

i=0,j^k  k  O' 

2 



be  the  Lagrange  Polynomials  associated  with  the  set  T”.  It  is  easy  to  show  that 

Mr)  =  |li;i4WIIU-  {2-3) fc=0 

In  addition,  we  introduce 

IK£r)IU  =  (/‘  t\U{T,tfdt)i.  (2.4) ik=0 

Let  /  £  C{I)  be  given  and  let  Pnif,t)  ̂   'Pn  be  arbitrary,  then 

11/  -  £t/IU  <  (1  +  Vr"))||/  -  P.IU.  (2.5) 

(2.5)  shows  that  the  interpolation  error  is  up  to  a  constant  (1  +  A(T"))  the  same  as  the 

error  of  the  best  approximation  and  hence  small  A(T”)  is  desirable.  Further  (2.5)  also  shows 

that  the  roundoff  error  9  (or  error  of  any  other  kind)  in  /(r”)  leads  to  the  increase  of  the 

interpolation  error  at  most  by  A(T")0.  This  observation  will  be  used  in  section  3. 

Remark.  Although  (2.5)  is  only  an  upper  estimate,  it  can  be  shown  that  if  A(T”)  rapidly 
grows  as  n  — oo,  the  interpolation  can  diverge. 

Our  aim  in  [2]  [3]  was  to  determine  the  optimal  points  which  leads  to  the  best 

interpolation.  Of  course  the  term  “6est”  has  to  be  defined.  For  survey  of  the  literature,  we 

refer  to  [2]  [6]  [7]  [9].  For  the  purpose  of  this  paper,  we  say  that  T”  is  optimal  if  A(T")  is 

minimal.  More  precisely,  we  denote  by  such  that  A„  =  A(T’^j)  =  inf  A(r"),  where  inf  is 
taken  over  all  interpolations  T”.  It  can  be  shown  that  the  set  exists  and  its  characteristic 

properties  are  known  as  the  Erdos-Bernstein  conjecture.  The  conjecture  is  proved  in  [4]  [5] 
The  points  and  A„  can  be  computed  numerically.  For  more  details,  see  [2]. 

Although  we  have  addressed  above  only  one  dimensional  case,  (2.1)  (2.2)  (2.5)  hold 

in  2  and  3  dimensions  too  (with  obvious  modifications  to  the  definition  of  the  Lagrange 

polynomials  (2.2)  and  the  integral  in  (2.4)). 

Given  Tf  and  T2,  we  say  T"  is  worse  than  T2  if  A(T”)  >  A(r^).  T"  is  close  to  T2  if 

A(r”)  A(T^).  This  comparison  criterion  between  two  sets  T”  is  useful  because  A(T")  can 

be  easily  computed.  In  contrast  the  optimal  set  T^”  ̂  is  very  hard  to  find  especially  in  2  and 
3  dimensions.  No  algorithm  for  locating  ̂   is  known  in  2  and  3  dimensions.  Hence  in  the 

literature,  various  approaches  to  find  approximate  optimal  sets  were  proposed  and  studied 

(see  e.g.,  [2]).  The  above  criterion  gives  a  characteristic  way  for  selecting  the  best  known  set. 

If  we  minimize  (2.4)  instead  of  (2.3),  we  get  the  mean  optimal  set  P{C)- 

easier  to  compute  numerically.  In  [2]  [3]  we  have  shown  thatT^^  in  2  and  3  dimensions  is 

better  than  any  proposed  sets  thus  far  in  the  literature.  In  one  dimension,  T^^  and  A„  are 

known,  we  can  compare  X{T^^)  with  A„  or  with  the  Lebesgue  constant  of  any  other  set. 

in  fact  is  quite  close  to  in  the  sense  that  A(T(£^)  is  close  to  A„. 
Remark.  We  defined  here  only  the  set  Other  expressions  can  be  used  in  the 

minimization  procedure  to  construct  optimal  sets.  For  some  of  the  computed  optimal  sets, 

see  e.g.,  [2]).  However,  appears  to  be  the  easiest  to  compute  among  proposed  optimal 
sets. 
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Table  2.1:  The  Lebesgue  constant  and  coordinates  of  the  optimal  set  and  the  mean  optimal
 

set  in  the  interval.  Since  both  sets  are  symmetrical,  only  interior  positive  coordinates  are 

listed. 

n X{T7a)-KTl.) 

rpn 

opt 

^(C) 

3 1.42291957 0.03249 0.4177913013559897 0.4306648 

4 1.55949021 0.03269 0.6209113046899123 0.6363260 

5 1.67221037 0.04662 0.2689070447719729 0.2765187 

0.7341266671891752 0.7485748 

6 1.76813458 0.04628 0.4461215299911067 0.4568660 

0.8034402382691066 0.8161267 

7 1.85159939 0.05345 0.1992877299056662 0.2040623 

0.5674306027472533 0.5790145 

0.8488719610366557 0.8598070 

8 1.92545762 0.05312 0.3477879716116667 0.3551496 

0.6535334790799030 0.6649023 

0.8802308527184540 0.8896327 

9 1.99168499 0.05746 0.1585652886576400 0.1618052 

0.4601498259228992 0.4687316 

0.7166138606253078 0.7273222 

0.9027709752917726 0.9108842 
10 

2.05170576 0.05718 0.2848880010669259 0.2901556 

0.5466676961746040 0.5556701 

0.7640984545671450 0.7739904 

0.9195087517942991 0.9265519 

11 2.10658026 0.06007 0.1317518400537555 0.1340857 

0.3862684522940377 0.3927173 

0.6144355426143385 0.6234070 

0.8006822662356081 0.8097370 

0.9322747830229179 0.9384302 

12 2.15711897 0.05985 0.2412235692922764 0.2451541 

0.4684175059008267 0.4754842 

0.6683666194633162 0.6770614 

0.8294354799669058 0.8376926 

0.9422316279551781 0.9476477 
13 

2.20395521 0.06191 0.1127327065284049 0.1144909 

0.3325418228947248 0.3375168 

0.5356654831037281 0.5429843 

0.7119103140476186 0.7202033 

0.8524275899174107 0.8599508 

0.9501460608151026 0.9549426 
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KTrc))-KT:,t) 
0.06173 

0.06328 

0.06313 

0.06432 

0.06420 

0.06515 

0.2091510118057353 

0.4091565377641974 

0.5912705457477183 

0.7475281167521386 

0.8710916063656573 

0.9565402633332384 

0.0985298474573020 

0.2918015306737818 

0.4738546882316757 

0.6376896724307452 

0.7770061889653626 

0.8864437409774569 

0.9617797380927199 

0.1845990864374410 

0.3629096640933456 

0.5288572896841651 

0.6767882780854777 

0.8016617897222662 

0.8992200402941425 

0.9661264749901083 

0.0875146934912087 

0.2598842018797722 

0.4243548709184729 

0.5759276542381555 

0.7099951678453442 

0.8224812942273985 

0.9099637674997672 

0.9697722141026608 

0.1652019161293088 

0.3258963986012215 

0.4776989334135101 

0.6164674680899757 

0.7384152664484192 

0.8402138571728484 

0.9190827139401264 

0.9728598818330955 

0.0787200614528085 

0.2342214072823386 

0.3839541516755896 

0.5242304777869164 

0.6515953324320913 

0.7629113849148811 

0.8554359734390852 

0.9268876556810802 

0.9754977704558682 

0.2121872 

0.4147776 

0.5986083 

0.7553639 

0.8779513 

0.9608141 

0.0999008 

0.2957382 

0.4798402 

0.6449010 

0.7843697 

0.8927090 

0.9656095 

0.1870111 

0.3674590 

0.5350106 

0.6837852 

0.8085605 

0.9049549 

0.9695763 

0.0886130 
0.2630690 

0.4293012 

0.5821132 

0.7167274 

0.8289349 

0.9152259 

0.9728948 

0.1671625 
0.3296409 

0.4828825 

0.6225929 

0.7448572 

0.8462483 

0.9239234 
0.9756989 

0.0796194 

0.2368471 

0.3880920 

0.5295337 

0.6575991 

0.7690531 
0.8610795 

0.9313521 
0.9780895 



In  table  2.1,  we  give  and  A„,  Because  T^j,  are  symmetrical,  we  only 

give  the  interior  positive  coordinates,  i.e.,  negative  coordinates  and  points  on
  the  boundary 

(ro  =  -1  and  r„  =  1)  and  the  center  (r„/2  =  0  for  even  degree)  are  not  listed.
 

2.2  Interpolation  in  the  triangle 

Consider  now  the  standard  triangle  5^  =  {{x,y)  •  x  >  0,y  >  0,1— x—y  >  0}.  {x,y,l—x—y) 

are  called  the  barycentric  coordinates  for  the  triangle.  We  denote  them  as  (61,62, 63)-  We 

seek  the  set  of  interpolation  points  which  minimize  (2.4)  written  in  the  two  dimensional
 

form.  Analogous  to  the  one  dimensional  case  where  we  constrain  the  points  Tq  and  on 

the  boundary  of  /,  we  use  the  points  constructed  in  section  2.1  as  the  interpolation  po
ints 

on  the  sides  of  We  then  find  the  points  inside  5^  by  minimizing  (2.4)  properly  adjusted 

to  the  two  dimensional  case.  We  have  shown  in  [2]  that  there  are  many  local  minima.  We 

select  the  one  which  leads  to  the  minimal  \{T^)  among  T"  with  various  symmetries.  We 

show  that  these  points  are  the  best  points  known  today  in  the  sense  defined  in  section  2.1. 

We  give  in  table  2.2. 

Ill  The  adaptive  procedure 

3.1  The  one  dimensional  case 

Let  n  -  \a,b]  be  partitioned  into  elements  e;  =  [z?,z^\  I  =  l,...,m.  We  assume  that  the 

partition  has  the  usual  properties,  i.e.,  Z2^^^  =  Zi  \  z\^^  =  a,z^^  =  6.  Let  I  =  (—1,1)  be 
the  master  element.  A  linear  map  maps  I  onto  e;. 

Let  /  e  C(n)  be  a  continuous  function  on  Cl,  fi  its  constraint  on  e;  and  Fi(^),  |^|  <  1  be 

the  preimage  of  //  on  I.  Using  the  interpolation  points  T"'  on  I,  we  construct  a  polynomial 

Pn,{T‘^‘ ,FhO  of  degree  n;  and  its  image  ^  n  =  {ni,...,nm).,  then  we 

denote  Pn(/,t)  the  piecewise  polynomial  on  Cl  such  that  Pn  =  Pn,(/)05^^  ̂   Since  the 

interpolation  points  contain  the  end  points  of  the  interval,  p„  is  continuous. 
Let 

^n,if)=\\f-Pn,\\e,,oo  (3-1) 

en(/)  =  ,  max  e„,(/)  =  11/  “  Pnll 
/=!,.. .,m 

Given  the  tolerance  e,  our  aim  is  to  construct  pjt)  so  that  e„(/)  <  e.  By  definition, 

this  is  equivalent  to  have  en,{f)  <  e.  Hence  our  aim  is  to  construct  adaptively  an  a 

posterior  error  estimator  with  the  polynomial  Pn,{f,t)  and  P„,(T"',F/,^)  so  that  €/(F;)  = 

_  F„.(T”',F/)||/,oo  <  e-  To  do  that,  we  need  to  have  an  error  indicator  77(P„;,jP/).  For 

n;  >  2,  we  define: 

rjl{Pn„Fi)=,  max  |F/(r"'“^)  -  F„,('L"'”^)I’
 

vfiPnp  Fi)  =  max  _  \Fi{t^)  -  P„,(r;)l;  (3.4) 
J  — 1,5  —  i 



Table  2.2:  The  Lebesgue  constant  and  barycentric  coordinates  of  the  mean  optimal  set  in 

the  triangle.  Points  with  symmetry  are  listed  only  once.  Other  Points  are  obtained  by 

permuting  the  barycentric  coordinates.  ni,n3,n6  are  the  number  of  points  of  singlet,  three 

fold  symmetry  and  six  fold  symmetry. 

n A 

ni 

ns 
riQ 

bi 

bi 

h 
2 

1- 

3 6 0 0 0 1.0000000 0.0000000 0.0000000 

0.5000000 0.5000000 0.0000000 

3 2.1115 
10 

1 0 0 1.0000000 0.0000000 0.0000000 

0.7251957 0.2748043 0.0000000 

1 0.3333333 0.3333333 0.3333333 

4 2.6920 
15 

0 1 0 1.0000000 0.0000000 0.0000000 

0.8306024 0.1693976 0.0000000 

0.5000000 0.5000000 0.0000000 

1 0.2208880 0.2208880 0.5582239 

5 3.3010 21 0 2 0 1.0000000 0.0000000 0.0000000 

0.8866427 0.1133573 0.0000000 

0.6431761 0.3568239 0.0000000 

2 0.1525171 0.1525171 0.6949657 

0.4168658 0.4168658 0.1662683 

6 3.7910 
28 

1 1 1 1.0000000 0.0000000 0.0000000 

0.9194021 0.0805979 0.0000000 

0.7349105 0.2650895 0.0000000 

0.5000000 0.5000000 0.0000000 

1 0.3333333 0.3333333 0.3333333 

1 0.1097139 0.1097139 0.7805723 

1 0.3157892 0.5586077 0.1256031 

7 4.3908 36 0 3 1 1.0000000 0.0000000 0.0000000 

0.9398927 0.0601073 0.0000000 

0.7957614 0.2042386 0.0000000 

0.6042138 0.3957862 0.0000000 

3 0.0817370 0.0817370 0.8365261 

0.4494208 0.4494208 0.1011584 

0.2663399 0.2663399 0.4673202 

1 0.2447528 0.6584392 0.0968080 

8 5.0893 
45 

0 3 2 1.0000000 0.0000000 0.0000000 

0.9533797 0.0466203 0.0000000 

0.8375919 0.1624081 0.0000000 

0.6801403 0.3198597 0.0000000 

0.5000000 0.5000000 0.0000000 

3 0.0627331 0.0627331 0.8745338 

0.2153606 0.2153606 0.5692789 

0.3891297 0.3891297 0.2217406 

2 0.3657423 0.5524728 0.0817849 

0.1942206 0.7294168 0.0763626 

7 



9  5.9181 

7.0851 

8.3383 

bi 

1.0000000 

0.9626819 

0.8672666 

0.7361751 

0.5815151 
0.3333333 

0.0493729 
0.4658361 

0.1769439 

0.3020146 
0.1575680 

0.3261032 
1.0000000 

0.9693919 

0.8889846 
0.7782484 

0.6451372 

0.5000000 

0.0397231 
0.1477532 
0.4210577 

0.2859582 

0.3962235 

0.2531675 

0.1304041 
0.2760598 
1.0000000 

0.9743976 
0.9054668 

0.8104474 

0.6950282 

0.5665299 
0.0325950 

0.4754886 
0.1252588 

0.2469949 

0.3752681 
0.3404173 

0.2152428 
0.1097836 

0.3649733 

0.2363509 

^2 

0.0000000 

0.0373181 
0.1327334 

0.2638249 
0.4184849 

0.3333333 

0.0493729 
0.4658361 

0.1769439 

0.6309227 
0.7808733 

0.4887991 
0.0000000 

0.0306081 
0.1110154 
0.2217516 

0.3548628 

0.5000000 

0.0397231 
0.1477532 

0.4210577 

0.2859582 
0.5463689 

0.6909248 
0.8190269 

0.5678554 
0.0000000 

0.0256024 

0.0945332 

0.1895526 

0.3049718 

0.4334701 
0.0325950 

0.4754886 
0.1252588 

0.2469949 

0.3752681 
0.6107764 

0.7374393 
0.8480326 

0.4997724 

0.6303341 

h 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.3333333 

0.9012542 
0.0683277 

0.6461122 
0.0670627 
0.0615587 
0.1850977 

0.0000000 

0.0000000 
0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.9205538 

0.7044935 

0.1578846 
0.4280837 

0.0574076 

0.0559077 

0.0505691 
0.1560848 
0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.0000000 

0.9348099 

0.0490228 

0.7494824 

0.5060102 
0.2494638 

0.0488062 
0.0473178 

0.0421838 

0.1352543 
0.1333150 



n A 

]V2
 

^  ’n 

ni 

nz Tie 

bi 

^2 

h 

12 10.082 
91 

1 4 7 1.0000000 0.0000000 0.0000000 

0.9782397 0.0217603 0.0000000 

0.9184891 0.0815109 0.0000000 

0.8356932 0.1643068 0.0000000 

0.7347400 0.2652600 0.0000000 

0.6208376 0.3791624 0.0000000 

0.5000000 0.5000000 0.0000000 

1 0.3333333 0.3333333 0.3333333 

4 0.0271978 0.0271978 0.9456044 

0.1075744 0.1075744 0.7848512 
0.4415257 0.4415257 0.1169486 

0.2152525 0.2152525 0.5694951 
7 0.4166350 0.5411712 0.0421938 

0.2954879 0.6624810 0.0420312 

0.1853001 0.7741774 0.0405225 

0.0937098 0.8706643 0.0356259 

0.3187835 0.5641899 0.1170266 

0.2045479 0.6802371 0.1152150 

0.3305135 0.4512984 0.2181880 
13 12.046 105 0 6 8 1.0000000 0.0000000 0.0000000 

0.9812954 0.0187046 0.0000000 

0.9289266 0.0710734 0.0000000 

0.8560408 0.1439592 0.0000000 

0.7665724 0.2334276 0.0000000 

0.6649507 0.3350493 0.0000000 

0.5559156 0.4440844 0.0000000 

6 0.0230602 0.0230602 0.9538797 

0.4816638 0.4816638 0.0366724 
0.0934032 0.0934032 0.8131936 

0.1893266 0.1893266 0.6213469 

0.4039822 0.4039822 0.1920355 

0.2969227 0.2969227 0.4061545 

8 0.3679120 0.5953680 0.0367200 

0.2590310 0.7043884 0.0365805 

0.1611020 0.8038486 0.0350494 

0.0809091 0.8887075 0.0303834 

0.3920816 0.5059948 0.1019235 

0.2807129 0.6169627 0.1023245 

0.1787576 0.7205294 0.1007129 

0.2928111 0.5148749 0.1923141 
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For  ni  =  2, 

(3.5) 
ri}(P„^2,F,)  =  i(f(P„,=2,f|)  =  m^|F,(7f)  - 

Obviously,  ri\  <  rj2  <  ||F/  -  P„,(r"',F;)||/,oo  =  €/.  We  recommend  using  4  since  it  is 
much  more  effective  than  rfi  especially  for  high  degree  interpolation.  The  idea  behind  the 

proposed  form  of  the  error  indicator  is  the  following:  If  the  interpolation  error  in  element 

Cl  is  too  large,  we  increase  the  degree  of  the  polynomial.  Since  in  most  cases,  getting  F/(r) 

is  expensive(e.g'.,  in  solid  modeling,  F/  is  obtained  using  interrogation  operators  of  the  solid 

modeler),we  use  only  the  previously  computed  values  in  the  adaptive  process.  For 

degree  2,  (3.3)  and  (3.4)  are  not  defined,  we  use  degree  3  points  as  in  the  error  indicator. 

This  increases  a  little  computation  time.  Since  the  interpolation  degree  3  is  low,  this  is 

not  a  serious  impediment.  By  this  procedure,  which  is  parallel,  we  construct  the  adaptive 

interpolation  with  n/  depending  on  the  given  tolerance  and  the  function  /. 

Note  the  optimal  interpolation  points  used  for  interpolation  satisfy  —  1  <  rf'  <  < 

T2'  <  T2'~^  <  ...  <  Tn\Zl  <  <  1.  Therefore,  the  error  indicator  and  if  never  sample 

points  in  intervals  (-l,r"')  and  (r”)_i,  1).  This  can  remedied  by  introducing  new  estimators 

=  max  |F(r;'+')  -P„,(r;'+')|,  (3.6) 

f]f{Pn„Fi)  =  max{fjj{P„,,Fi),r]f{Pn,,Fi)).  (3.7) 

However,  Since  interpolation  points  are  denser  near  the  end  points  than  near  the  center, 

the  intervals  (-1,t”')  and  (r")_i,l)  are  quite  small  (compared  to  the  average  distance  be¬ 
tween  neighboring  interpolation  points).  In  most  cases,  the  results  of  using  j]f{Pn,,Fi)  and 

fjf{Pn,,Fi)  are  quite  similar.  However,  ̂ f(P„,,F/)  has  the  disadvantage  of  using  higher  de¬ 
gree  information  not  computed  previously  in  the  adaptive  process.  When  getting  F/(r)  is 

not  expensive,  it  may  be  advantagious  to  use  7)f(P„,,F/) 

Example  3.1.  Let  Q  =  [0,8],  h  =  (0,2),f2  =  {2,4),li  =  (4,6),/4  =  (6,8).  Let  /  = 

(a;Zio)2+r  table  3.1,  we  report  the  values  as  a  function  of  the  polynomial  degree 

n, 

We  see  that  both  error  indicators  are  quite  reliable.  The  effective  indices(the  ratio  of  the 

error  indicator  rji  and  the  actual  error  e/)  are  near  one.  The  second  error  indicator  rjf  is  more 

effective  than  r]j .  Although  the  effective  indices  are  not  far  from  one,  we  suspect  they  are 

not  asymptotically  exact,  i.e.,  it  does  not  approach  to  one  as  interpolation  degree  increases 

to  infinity. 

We  also  see  that  uniform  degree  interpolation  is  not  economical.  In  table  3.2,  we  give 

the  optimal  degree  distribution  for  various  tolerance  e  using  -qf  as  the  error  estimator. 
Example  3.1  is  typical  and  similar  results  are  obtained  for  other  test  cases. 

3.2  The  two  dimensional  case 

Let  Q.  C  he  a  closed  polygonal  domain  partitioned  into  triangular  elements  e/  in  the 

standard  way.  Let  Ff ,  fc  =  1, 2, 3  be  the  edges  of  e;  and  let  e  be  the  tolerance.  Further  let  D 

be  the  standard  triangle  and  V’/  maps  D  onto  e/.  As  before,  let  /  €  C{Q,)  be  a  continuous 

function  on  0,  //  its  restriction  on  e;  and  Fi  its  preimage  on  D.  In  exactly  the  same  way  as 
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Table  3.1:  Errors  and  error  indicators  for  example  3.1. 

2  0.27E-04 

3  0.17E-05 

4  O.lOE-06 

5  0.61E-08 

6  0.36E-09 

7  0.21E-10 

8  0.12E-11 

9  0.71E-13 

0.24E-04 

0.15E-05 

0.88E-07 

0.56E-08 

0.33E-09 

0.19E-10 

O.llE-11 

0.64E-13 

0.24E-04 

0.15E-05 

0.88E-07 

0.56E-08 

0.35E-09 

0.21E-10 

0.12E-11 

0.68E-13 

Table  3.2:  Adaptive  interpolation  degrees  and  errors  for  various  tolerances  for  example  3.1. 



in  the  one  dimensional  case,  from  the  error  indicator  {Vi\v2^)  defined  analogous  to  (3.4), 

we  construct  a  polynomial  P„,(T"',F/)  such  that  e(F/)  =  ||F/  —  F/)||e,,oo  ~  ^ 
By  pn,,  we  denote  the  image  of  P„,  on  e/  and  by  p„(/,  t),  we  denote  the  piecewise  polynomial 

function  on  fl  such  that  its  restriction  on  e;  is  Pn,- 

In  contrast  to  the  one  dimensional  case,  if  the  polynomial  degrees  for  two  elements  sharing 

a  common  edge  are  different,  Pn(/,t)  is  no  longer  continuous  on  the  common  edge.  We  need 

to  modify  in  the  adaptive  procedure  to  construct  a  new  piecewise  polynomial  p„  so  that 

on  the  common  edge  of  the  two  elements  is  continuous. 

Note  that  during  the  adaptive  process,  the  interpolation  degree  n;  for  each  element  is 

given  (starting  from,  say,  n;  =  2  for  all  elements).  We  observe  that  on  the  common  edge 

E  =  Ep  =  Ej^^,  both  are  within  tolerance  e  of  the  function  F.  Therefore  we 

use  polynomial  Pp^  where  ue  =  min(n;,,n/j)  to  approximate  F  on  the  common  edge  E. 
After  interpolating  the  function  with  degree  ue  on  every  edge,  we  interpolate  the  function  in 

each  element  e/  by  the  following  procedure.  For  a  node  on  edge  E,  we  replace  the  function 

value  F  at  that  node  with  the  value  of  the  edge  interpolated  function  Pp^.  For  a  node  in 

the  interior,  we  use  the  original  function  value  F.  By  this  procedure,  which  is  parallel,  we 

obtain  a  continuous  polynomial  of  degree  ni  on  e/.  We  have  ||/  —  p„||n,oo  <  c(l  +  A(T")) 

where  n  =  maxng.  The  error  ||/  —  p„J|e„n  can  be  estimated  by  the  error  indicator.  If 

ll/-Pn,lie,,  oo  <  c  is  not  satisfied  for  some  element  e;,  we  increase  the  approximation  degree 
rii  and  continue  the  adaptive  procedure. 

Remark.  ||/  —  p„||n,oo  <  c(l  +  A(T”))  is  an  over  estimate.  Actually,  let  €i  =  maxejs, 

where  is  the  error  on  the  edge  P,  ei  <  e.  then  ||/  —  p„||n,oo  <  e  4-  A(r")ei.  e\  is  usually 
much  samller  than  e  because  the  Lebesgue  function  on  the  triangle  edges  is  usually  much 

smaller  than  the  Lebesgue  constant.  The  bound  can  further  be  made  sharper.  Therefore, 

11/  —  Pn||n,oo  <  c  is  more  likely  to  be  satisfied. 

Example  3.2.  Let  =  [0,4]  x  [0,4].  Q,  is  partitioned  into  8  triangles  ei  =  {{x,y)  :  x  > 

0,  y  >  0, T  +  y  <  2},  e2  =  {(a;,  y)  :  a:  <  2,  y  <  0,  x  +  y  >  2},  63  =  ei  +  (2, 0),  64  =  62  +  (2, 0), 

65  =  Cl  +  (0, 2),  ee  =  62  +  (0, 2),  67  =  ei  +  (2, 2),  es  =  62  +  (2, 2).  Let  /  = 

In  table  3.3  we  show  the  error  and  error  indicators  for  f  —  Pn,-  For  various  tolerance  e,  the 
sequence  of  the  adaptive  approximation  degree  is  given  in  table  3.4.  We  also  report  the  error 

and  the  indicators  for  the  adaptively  determined  p„  using  pf. 

Note  the  error  indicators  in  the  triangle  are  usually  not  as  effective  as  in  the  one  dimen¬ 
sional  case. 

Remark.  Interpolation  in  domains  partitioned  into  curvilinear  elements  is  done  in  the 

same  way  as  in  the  finite  element  method  using  pullback  polynomial  on  the  standard  element. 

Remark.  Often  we  have  to  impose  an  upper  bound  on  the  degree  of  used  polynomials.  If 

then  the  accuracy  is  not  achieved,  the  mesh  has  to  be  refined  in  those  elements  where  the 

desired  accuracy  is  not  achieved. 
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0.97E-02 

0.12E-02 

0.25E-03 

0.13E-03 

0.41E-04 

0.96E-05 

0.20E-05 

0.27E-06 

0.82E-02 

0.12E-02 
0.13E-03 

0.53E-04 

0.21E-04 

0.55E-05 

0.12E-05 

0.17E-06 

0.82E- 

0.12E- 
0.13E- 

0.53E- 
0.25E- 

0.81E- 

0.18E- 

0.26E- 

^2 

41^2 

0.19E-02 0.16E-02 
0.88 

0.16E-02 0.88 

0.27E-03 0.24E-03 
0.90 

0.24E-03 
0.90 

0.33E-04 0.24E-04 0.74 
0.24E-04 0.74 

0.19E-04 0.18E-04 
0.95 

0.18E-04 

0.95 

0.77E-05 0.52E-05 
0.68 

0.74E-05 

0.96 

0.23E-05 0.16E-05 
0.69 

0.20E-05 
0.89 

0.52E-06 0.34E-06 
0.65 

0.45E-06 0.85 

0.85E-07 0.49E-07 
0.57 

0.78E-07 
0.92 

^3 

^3 

vi 

vi/(3 
0.18E-02 0.16E-02 

0.90 
0.16E-02 

0.90 

0.24E-03 0.24E-03 
1.00 

0.24E-03 
1.00 

0.31E-04 0.12E-04 
0.39 

0.12E-04 
0.39 

0.16E-04 O.lOE-04 0.62 O.lOE-04 0.62 

0.57E-05 0.42E-05 0.73 0.51E-05 
0.88 

0.15E-05 O.llE-05 0.72 0.13E-05 0.81 

0.34E-06 0.23E-06 0.70 
0.23E-06 

0.70 

0.46E-07 0.35E-07 
0.75 

0.36E-07 
0.79 

es 

^5 

^5/^5 

4 

4/^3 

0.18E-02 0.16E-02 0.90 
0.16E-02 

0.90 

0.24E-03 0.24E-03 
1.00 

0.24E-03 
1.00 

0.31E-04 0.12E-04 0.39 0.12E-04 
0.39 

G.16E-04 O.lOE-04 0.62 O.lOE-04 0.62 

0.57E-05 0.42E-05 0.73 
0.51E-05 

0.88 

0.15E-05 O.llE-05 0.72 0.13E-05 0.81 

0.34E-06 0.23E-06 0.70 
0.23E-06 

0.70 

0.46E-07 0.35E-07 0.75 0.36E-07 
0.79 

67 

m 
0.18E-03 0.13E-03 0.71 0.13E-03 0.71 
0.24E-04 0.17E-04 0.72 0.17E-04 0.72 

0.30E-05 0.21E-05 0.68 
0.21E-05 0.68 

0.36E-06 0.26E-06 0.72 0.26E-06 0.72 

0.39E-07 0.29E-07 0.73 0.30E-07 
0.75 

0.45E-08 0.29E-08 
0.65 0.37E-08 0.82 

0.45E-09 0.27E-09 0.59 0.36E-09 0.81 

0.33E-10 0.19E-10 
0.59 

0.30E-10 
0.91 

0.70E-03 

0.92E-04 

0.12E-04 
0.50E-05 

0.20E-05 

0.65E-06 

0.17E-06 

0.28E-07 

ee 

0.70E-03 
0.92E-04 

0.12E-04 

0.50E-05 
0.20E-05 

0.65E-06 
0.17E-06 

0.28E-07 

^8 

0.58E-04 
0.78E-05 
0.99E-06 

0.14E-06 

0.18E-07 
0.21E-08 

0.21E-09 
0.17E-10 

0.63E-03 

0.92E-04 
0.85E-05 
0.39E-05 

0.16E-05 
0.42E-06 

0.90E-07 
0.13E-07 

0.63E-03 

0.92E-04 

0.85E-05 
0.39E-05 

0.16E-05 
0.42E-06 

0.90E-07 
0.13E-07 

0.49E-04 

0.66E-05 
0.79E-06 
O.lOE-06 

O.llE-07 

0.12E-08 

0.12E-09 

0.87E-11 

0.90 
1.00 

0.72 
0.79 

0.83 

0.65 

0.54 
0.47 

»78/^8 
0.84 

0.85 
0.80 

0.72 
0.62 
0.56 

0.56 

0.52 

0.63E-03 

0.92E-04 
0.85E-05 
0.39E-05 
0.19E-05 

0.49E-06 

0.12E-06 

0.20E-07 

0.63E-03 

0.92E-04 
0.85E-05 

0.39E-05 

0.19E-05 
0.49E-06 

0.12E-06 
0.20E-07 

m 

0.49E-04 
0.66E-05 

0.79E-06 
O.llE-06 

0.16E-07 
0.19E-08 

0.18E-09 
0.15E-10 

0.90 
1.00 

0.72 

0.79 0.99 

0.75 

0.69 

0.71 

^8  As 0.84 0.85 

0.80 

0.75 

0.91 
0.89 

0.84 

0.92 



Table  3.4:  Adaptive  interpolation  degrees  and  errors  for  various  tolerances  for  example  3.2. 

e  is  the  given  tolerance.  e„  is  the  error  in  fl. 

6 

ni 

n2 

^2 ns 

^3 

714 

^4 

l.OE-3 
4 0.25E-03 3 

0.26E-03 
3 0.24E-03 2 

0.70E-03 

l.OE-4 
5 0.13E-03 4 

0.41E-04 
4 

0.31E-04 
3 

0.92E-04 
l.OE-5 7 0.96E-05 6 

0.78E-05 
6 0.57E-05 4 1.08E-05 

l.OE-6 
9 0.27E-06 8 0.52E-06 8 

0.34E-06 
7 

0.66E-06 

ei 
n2 

^2 ns 

^3 

714 

€4 

0.70E-3 
3 0.24E-03 2 0.70E-03 2 

0.18E-03 
2 

0.58E-04 
0.92E-4 

4 
0.31E-04 

3 0.92E-04 3 
0.24E-04 

2 

0.59E-04 
1.08E-5 

6 0.57E-05 4 
1.08E-05 

4 
0.30E-05 

3 
0.78E-05 

0.66E-6 
8 

0.34E-06 
7 

0.66E-06 
5 

0.36E-06 
4 

l.OlE-06 
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